Parental Effects on Seed Mass: Seed Coat but Not Embryo/endosperm Effects1
نویسندگان
چکیده
Many biologists studying environmentally induced parental effects have indirectly suggested that the parental environment alters seed mass by altering the amount of endosperm or embryo tissue in the seed. We tested this hypothesis by measuring the effects of parental temperature on total seed mass, seed coat mass, and embryo/endosperm mass in offspring of Plantago lanceolata. Parental temperature significantly affected total seed and coat mass but not endosperm/embryo mass. Thus, larger seeds do not contain more resources in the embryo or endosperm than do small seeds. Rather they have more coat mass, which probably strongly influences germination. These results suggest caution when making assumptions about the pathways by which environmentally induced parental effects are transmitted in plant species. We also observed that controlled crosses differed significantly in their response to parental temperature, which provides evidence for genetic variation in environmentally induced parental effects, i.e., intergenerational phenotypic plasticity, in natural populations of P. lanceolata.
منابع مشابه
Parental effects on seed mass: seed coat but not embryo/endosperm effects.
Many biologists studying environmentally induced parental effects have indirectly suggested that the parental environment alters seed mass by altering the amount of endosperm or embryo tissue in the seed. We tested this hypothesis by measuring the effects of parental temperature on total seed mass, seed coat mass, and embryo/endosperm mass in offspring of Plantago lanceolata. Parental temperatu...
متن کاملA cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo.
Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidops...
متن کاملThe female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis.
Double fertilization of the female gametophyte produces the endosperm and the embryo enclosed in the maternal seed coat. Proper seed communication necessitates exchanges of signals between the zygotic and maternal components of the seed. However, the nature of these interactions remains largely unknown. We show that double fertilization of the Arabidopsis thaliana female gametophyte rapidly tri...
متن کاملBrassinosteroid functions in Arabidopsis seed development
Seed development of flowering plant is a complicated process controlled by a signal network. Double fertilization generates 2 zygotic products (embryo and endosperm). Embryo gives rise to a daughter plant while endosperm provides nutrients for embryo during embryogenesis and germination. Seed coat differentiates from maternally derived integument and encloses embryo and endosperm. Seed size/mas...
متن کاملThe MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana
Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The...
متن کامل